[1] Solve
$$\frac{4}{x-2} - \frac{1}{x+3} = \frac{5}{x^2 + x - 6}$$
. LCD= $(x-2)(x+3)$

ANSWER:

$$4(x+3)-(x-2)=5$$

$$4x+12-x+2=5$$
, $3x=-9$

[2] If
$$f(x) = x^2 - 2x$$
, find the difference quotient $\frac{f(x+h) - f(x)}{h}$.

ANSWER:

$$= \frac{(x+h)^{2}-2(x+h)-(x^{2}-2x)}{h}$$

$$= \frac{x^{2}+2hx+h^{2}-2(x+h)-(x^{2}-2x)}{h}$$

$$= \frac{2x+h-2}{h}$$

ANSWER: $y+5=-\frac{2}{3}(x-12)$

through the point (12, -5) perpendicular to the line
$$9x - 6y = -2$$
.

$$-6y = -9 \times -2$$

$$1 \quad 1 = 3 \times + \frac{1}{2}$$

[3]

$$\int_{y=\frac{3}{2}x+\frac{1}{3}}^{y=\frac{3}{2}x+\frac{1}{3}}$$

$$m=-\frac{2}{3}$$

$$m = -\frac{2}{3}$$

Determine algebraically if the graph of $xy^2 = 4$ is symmetric over the x - axis. [4]

$$(x(-y)^2=4)$$

$$(xy^2=4)$$

[5] Find the
$$x$$
 – intercepts of the function $g(x) = 3x^2 - 2x - 2$.

$$3x^{2}-2x-2=0$$

$$x = 2 \pm \sqrt{4+24}$$

$$= |2 \pm \sqrt{28}|$$

$$= 2 \pm 2\sqrt{7} = |\pm \sqrt{7}|$$

[6] Find the domain of the function
$$h(x) = \sqrt{7-3x}$$

$$7-3 \times \ge 0$$

$$-3 \times \ge -7$$

$$\times \le \frac{\pi}{3}$$

ANSWER:

$$\left\{ x \leq \frac{7}{3} \right\}$$
or
$$\left(-\omega, \frac{7}{3} \right]$$

The weights
$$w$$
 of one-third of the members of a population satisfy the inequality ANSWER: $(w, 135) \cup (195, 00)$ $|w-165| \ge 1$, where w is measured in pounds. Determine the interval(s) on the real number line in which these weights lie.

$$\frac{W-165}{30} \ge 1$$
 or $\frac{W-165}{30} \le -1$
 $W-165 \ge 30$ or $W-165 \le -30$
 $W \ge 195$ or $W \le 135$

[8] A kitchen appliance manufacturing company determines that the total cost in dollars of producing
$$x$$
 units of a blender is $C = 25x + 3500$. Describe the practical significance of the C – intercept and slope of this line.

THE C-INTERCEPT IS THE FIXED COST IF NO BLEWDERS ARE PRODUCED. THE SLOPE IS THE COST OF PRODUCING EACH BLENDER

[9] Evaluate
$$p(x) = \begin{cases} 2x^2 + 1, x \le -2 \\ 5 - 4x, -2 < x < 3 \text{ at each specified value of the independent variable below.} \\ 1 - x^2, \quad x \ge 3 \end{cases}$$

[a]
$$p(-1) = 5-4(-1)$$

[b]
$$p(3) = 1 - 3^2$$